Варианты базирования средств системы перехвата опасных космических объектов

Кухня с фасадами из пластика капри кухня капри фото. .

Специалисты рассматривают различные возможности размещения средств космической защиты. В целях большей безопасности система должна иметь несколько эшелонов.
Первый, самый удалённый эшелон предлагается разместить в окрестностях точек либрации системы Солнце — Земля. Точками либрации называют точки, в которых тело малой массы может находиться в состоянии относительного равновесия по отношению к двум другим небесным телам. Второй эшелон специалисты предлагают развернуть вблизи точек либрации системы Земля — Луна, а также на самой Луне.


Третий — также космический эшелон — могут составить специально оснащённые искусственные спутники Земли, находящиеся как на низких, так и на высоких орбитах, вплоть до геостационарных (на высоте около 36 000 км). Четвёртый — последний — эшелон развёртывается на поверхности Земли.
Каждый из эшелонов должен иметь в своем составе комплекс для дальнего обнаружения и определения орбит ОКО, средства воздействия на опасные объекты, а также системы обеспечения работоспособности элементов космической защиты и управления ими.
В чем преимущество размещения средств космической защиты в области точек либрации систем Солнце — Земля и Земля — Луна?
В системе Земля — Луна они расположены в плоскости обращения Луны вокруг Земли и занимают относительно неё неизменное положение. Таких точек существует 5. Из них три (LI, L2, L3) лежат на прямой, соединяющей Землю и Луну, а две другие — L4, L5 — на лунной орбите. Расстояние от Земли до точек либрации LA и L5, как и до Луны, равно 384 000 км. Эти точки — частные решения задачи движения космического объекта под действием притяжения Земли и Луны.
Точки L4 и L5 образуют с Луной и Землёй два равносторонних треугольника. Их называют треугольными точками либрации. Французский математик и астроном Лагранж в конце XIX в. показал, что положение малого тела, помещённого в треугольные точки, будет устойчивым. Более того, тело, выведенное из этих точек, обязательно вернётся назад.
Вот почему вблизи треугольных точек космический объект может находиться без коррекции очень долгое время (до 15 месяцев). Кроме того, благодаря особой структуре силового поля в районе точек либрации затраты на проведение каждой коррекции весьма незначительны по сравнению с коррекциями в любой другой области космического пространства. В этом и заключается основное преимущество базирования здесь космических перехватчиков.
* * *
Цели и задачи Всемирной службы защиты Земли
Основная цель Всемирной службы защиты Земли очевидна — предотвратить возможность или уменьшить отрицательные последствия космических катастроф. Меры защиты могут быть активные и пассивные. Пассивные меры предполагают обнаружение опасных объектов, слежение за ними, оценку возможных последствий столкновения, эвакуацию населения и ценностей, защиту наиболее важных объектов.
Активные способы защиты сводятся к уничтожению потенциально опасных космических объектов (ОКО) или к изменению их орбит.
В том и другом случае первый этап — открытие ОКО, возможно более полное изучение их размеров, природы и уточнение траектории. Выбор способов защиты и мер воздействия зависит от свойств открытого опасного объекта и времени до возможного столкновения. Воздействие на объект до выяснения его свойств в некоторых случаях может не только не уменьшить опасность, но увеличить масштаб катастрофы. В зависимости от имеющегося запаса времени до столкновения будут планироваться меры защиты.
Необходимые системы защиты Земли:
— обнаружение, слежение, распознание, каталогизация опасных космических объектов;
— определение степени угрозы и возможных последствий столкновения;
— организация специальных мер для предотвращения катастрофы или снижения ее уровня.
В обобщенном виде система должна включать в себя три части: службу наблюдений, службу управления и службу противодействия.
А вот более полный состав системы космической защиты:
— сеть центров теоретических исследований и разработок проблем космической защиты;
— система мониторинга за опасными космическими объектами;
— средства доставки (ракеты-носители, разгонные блоки, перехватчики и др.);
— средства воздействия (ядерные и неядерные);
— средства регистрации и контроля результатов воздействий на опасные космические объекты;
— глобальный командно-измерительный комплекс;
— центральная система управления средствами защиты Земли.
Основные требования к средствам защиты Земли: высокая (оптимальная) экономичность; высокая вероятность перехвата; минимальное влияние мер защиты от опасных космических объектов на околоземное пространство и экологию Земли.
Наиболее реально и необходимо начинать с создания службы оперативного перехвата. Ведь, как мы уже знаем, в ближайшем будущем наиболее вероятно столкновение с небольшим небесным телом, которое может быть обнаружено вблизи Земли за сравнительно короткое время до встречи с ним.
Параллельно необходимо и важно постоянно вести астрономические наблюдения малых тел Солнечной системы, проводить теоретические и экспериментальные исследования по проблемам космической безопасности. Важными направлениями этой работы являются разработка моделей типов опасных космических объектов и моделей воздействия на них.

Их расположение в треугольных точках практически без энергетических затрат позволяет почти всю имеющуюся энергию использовать по прямому назначению для полёта к опасному объекту.
Другое преимущество — возможность в любой момент связаться с базой и передать, если необходимо, программу подготовки и проведения операции защиты.
Такое удаление от Земли термоядерных зарядов сделало бы их безопасными для нас. И что особенно важно, размещение средств защиты на таком расстоянии от Земли позволяет увеличить дальность перехвата ОКО.
Размещение средств защиты в окрестностях устойчивых точек либрации (LA и L5) системы Земля — Солнце имеет дополнительное преимущество: большая удаленность от Земли (150 млн. км) создаёт ещё больший запас времени для обнаружения опасного объекта, определения его свойств и параметров движения. Всё это позволяет выбрать наиболее надёжную стратегию перехвата опасного космического объекта.
Основной проблемой реализации этого варианта базирования является доставка массивных элементов системы в удалённые от Земли точки либрации. Однако транспортные операции могут быть осуществлены с минимальными энергетическими и материальными затратами. Для доставки в дальний космос средств защиты можно будет экономичные электрореактивные двигатели. Ведь создатели баз фактически не будут лимитированы окончательными сроками реализации проекта.
Если использование окрестностей устойчивых точек либрации (L4 и L5) системы Земля-Солнце дело будущего, то в точках либрации L1 и L2, которые в 100 раз ближе к Земле, несут свою вахту астрономические инструменты. В первой из них, расположенной в 1,5 млн. км от нас по направлению к Солнцу, более 10 лет за дневным светилом наблюдает уже знакомая нам обсерватория SOHO. Точка L2 противоположна первой и расположена в 1,5 млн. км позади Земли. Из этой точки можно контролировать почти всю небесную сферу, за исключением небольшого участка, который занимают Солнце, Земля и Луна. Вблизи точки L2 находится несколько аппаратов, ведущих наблюдения космических объектов в различных областях спектра.
Создание такой четырехуровневой системы космической защиты Земли — задача чрезвычайно сложная, рассчитанная на многие десятилетия. Особенно проблематично создание двух «верхних» эшелонов космической стражи. Это дело отдалённого будущего, требующее к тому же огромных финансов. Особо трудная задача — обеспечение длительного и автономного функционирования удалённых космических систем. Некоторые учёные полагают, что подобная система всё-таки может быть создана поэтапно, объединёнными усилиями всех стран, но прежде всего — космических держав. Другие специалисты считают создание описанной «многослойной» системы защиты Земли в обозримом будущем просто нереальным.
Решать проблемы космической защиты Земли можно, объединив усилия и возможности мирового сообщества. Прежде всего необходимо создать международный мобилизационный план — план действий, направленных на снижение ущерба от космических катастроф. План должен включать как пассивные средства (средства гражданской защиты, средства информации), так и активные средства противодействия.
Наиболее реально использовать в системе космической защиты элементы двойного назначения. Их обычно используют в научных и народнохозяйственных целях, но при возникновении космической угрозы мобилизуют для решения задач защиты. Такой подход экономически наиболее оправдан и реалистичен.
Начинать создание системы целесообразно с развёртывания средств защиты Земли от объектов размерами 50–100 м. Во-первых, это посильная задача, а во-вторых, столкновение с объектами таких размеров наиболее вероятно.
Создавать систему следует, опираясь на имеющиеся средства противовоздушной и противоракетной обороны, на технику исследования и освоения космоса, на теоретические и технологические разработки военно-промышленного комплекса. Это не только сэкономит значительные средства, но сильно упростит и ускорит развертывание системы защиты Земли.
Многие специалисты предлагают использовать прежде всего мобильные стартовые ракетные комплексы. Это повысит оперативность защиты. Уже сегодня космические аппараты могут использоваться в интересах астероидной безопасности. Это прежде всего системы спутниковой связи и навигации. Несколько лет с борта геостационарных американских искусственных спутников, оснащённых инфракрасными и оптическими датчиками, ведётся регистрация ярких болидов — вспышек, вызываемых вторжением космических тел в атмосферу Земли.

Комментарии закрыты.